
Scalability of Global UQ Methods 

For production UQ analyses, we prefer fast converging global methods: 

• local approximate methods (reliability methods, moment-based methods) exhibit  

significant errors in presence of multimodal/nonsmooth/highly nonlinear responses 

• MC/LHS are robust with dimension-independent convergence rates, but rates can  

be unacceptably slow 

Spectral methods (e.g., PCE) provide a more effective balance of robustness  

and efficiency, especially when solution smoothness can be exploited 
 

Exponential growth in expansion cardinality with n and p, and collocation 

requirements are >= the number of terms 
 

To mitigate the curse of dimensionality: 

• A priori model reduction methods (e.g., POD, Karhunen-Loeve) or other surrogate 

techniques (e.g., multifidelity) 

• Goal-oriented adaptive refinement to reduce effective dimension 

• Adjoint techniques [given n (random dimension) > m (response QoI)] 

• Sparsity detection methods: compressive sensing, least interpolation 
 

Primary focus is stochastic exp., but other adaptive sampling efforts are related  
(and can be leveraged within an abstract refinement framework: EGRA, GPAIS, k-d darts, Morse-Smale) 



Non-Intrusive Stochastic Expansions: 

Polynomial Chaos and Stochastic Collocation 

Polynomial chaos: spectral projection using orthogonal polynomial basis fns 

  

   using 

 

• Estimate aj using regression or numerical integration: 

sampling, tensor quadrature, sparse grids, or cubature 
 

 

 

 

 

 

 

 

 

 

• Tailor expansion form: 
– p-refinement: anisotropic tensor/sparse, generalized sparse 

– h-refinement: local bases with dimension & local refinement 

• Method selection: fault tolerance, decay, sparsity, error est. 

Stochastic collocation: instead of estimating coefficients for  

known basis functions,  form interpolants for known coefficients 

• Global:  Lagrange (values) or Hermite (values+derivatives) 

• Local:    linear (values) or cubic (values+gradients) splines 

Sparse interpolants formed using S of tensor interpolants 

super-algebraic for num. 

integration & regression 

1/sqrt(N) for LHS 



Same physics: 

 
• a clear hierarchy of fidelity (low to high)  multifidelity UQ 

 

 

 

• an ensemble of models that could all be credible (lacking a clear preference structure) 

 model form uncertainty (inadequate data), model selection (rich data) 

 

 

 

 

Additional dimension(s) for multi-{physics,scale} 

Core-Enabled UQ: Multiple Model Forms 

Low 

Med 

High 

SA-RANS KE-RANS-NBC KE-RANS-DBC 



Multifidelity UQ through stochastic expansion of model discrepancy: 
• Extension of multifidelity opt methods that converge to local HF optimum based on local corrections 

• Converge to global HF statistics based on global corrections (0th/1st consistency @HF collocation pts) 

Multifidelity UQ using Stochastic Expansions 

Adaptive algorithm balances LF/HF cost and targets 

regions where LF predictive capabilities break down: 

• Greedy selection of index sets for LF or model discrepancy 

based on DQOI/DCost 

Nlo >> Nhi 



Multifidelity UQ with stochastic expansions 

• A hierarchical approximation: resolve expansions for LF and ≥ 1 levels of  model discrepancy 

• leverage information from less expensive low & medium-fidelity models 

• Adaptive multifidelity algorithm  further generalization to generalized sparse grids 

• target regions where predictive capability of LF model breaks down 

• greedy selection of candidates that provide the greatest benefit to HF QoI per unit cost 

Performance 

• Ideal LF model for multifidelity UQ would result in discrepancy with the following properties: 

• discrepancy has lower complexity than HF model (spectrum of coefficients of discrepancy 

expansion decays more rapidly than HF expansion)  faster convergence rate (affects exponent) 

• discrepancy has lower variance than HF model  reduction in initial error (affects leading constant) 

• Examples with good LF models  short column Rlow1, elliptic PDE 

• ~ 80% reduction in HF evals for comparable statistical accuracy 

• In non-ideal cases, LF model is non-informative or omits/introduces high order information 

• horn acoustics: multifidelity performance did not degrade significantly from single-fidelity 

performance, as algorithm can fall back to reliance on resolving the original HF trends 

• Additional directions: 

• adaptively discarding models from the hierarchy that are not providing value (low selection rate) 

• basis pursuit approaches (compressive sensing) that can directly target high-order discrepancy 

while benefiting from LF capture of low order trends 

𝒙𝒏 − 𝑳 < 𝑪𝒏−𝒑 



Current Focus: VAWT Performance Modeling 

Vertical-axis Wind Turbine (VAWT) 
CACTUS: Code for Axial and 

Crossflow TUrbine Simulation 

Computed vortex filaments 

in the wake of a VAWT 

Low fidelity 

BLOCK 1 

BLOCK 2 

BLOCK 3 

BLOCK 4 

High fidelity: DG formulation for LES 
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Model Form Uncertainty Propagation 
Mixed Aleatory-Epistemic UQ with Discrete Epistemic Model Forms 

Traditional approach: nested sampling 

• Expensive sims  under-resolved  

sampling (especially @ outer loop) 

• Under-prediction of credible outcomes 

epistemic 

sampling 

aleatory 

sampling 

simulation 

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge  

uncertainty): insufficient info to specify objective probability distributions 

Address accuracy and efficiency 

• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) 

• Outer loop: 

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) 

• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases) 

Increasing epistemic 

structure (stronger 

assumptions) 

Algorithmic approaches 

• Interval-valued probability (IVP), aka probability bounds analysis (PBA) 

• Dempster-Shafer theory of evidence (DSTE) 

• Second-order probability (SOP), aka probability of frequency 



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals 

 

 

 

 

IVP nested LHS sampling: converged to 2-3 digits by 108 evals 

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900] 

Mixed Aleatory-Epistemic UQ: 
IVP, SOP, and DSTE based on Stochastic Expansions 

Multiple cells  

within DSTE 

Analytic C∞ 

Convergence rates for combined expansions 

L∞ metrics:  

IVP mixed,  

DSTE mixed 

L2 metrics: 

Aleatory,  

SOP mixed 

Rational 
Discontinuous C0 



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals 

 

 

 

 

IVP nested LHS sampling: converged to 2-3 digits by 108 evals 

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900] 

Mixed Aleatory-Epistemic UQ: 
IVP, SOP, and DSTE based on Stochastic Expansions 

Multiple cells  

within DSTE 

Analytic C∞ 

Convergence rates for combined expansions 

L∞ metrics:  

IVP mixed,  

DSTE mixed 

L2 metrics: 

Aleatory,  

SOP mixed 

Rational 
Discontinuous C0 Impact: render mixed UQ studies  

practical for large-scale applications 
Current:  

• Global or local opt. for epistemic intervals  

 accuracy or scaling w/ epistemic dimension 

• Global or local UQ for aleatory statistics  

 accuracy or scaling w/ aleatory dimension 

Future: 

• adaptive and adjoint-enhanced global methods  

 accuracy and scaling 



Addition of Discrete Epistemic Model Form 

MINLP interval estimation approaches 

• Latin hypercube sampling (LHS) 

• Evolutionary algorithm (EA) 

• Surrogate-based global optimization (SBGO) 
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Drekar RANS turbulence: Spalart-Allmaras, k-e 


